LINKS EN EL DOCUMENTO

CONSIDERACIONES INICIALES

  1. El reloj de sol sirve para cualquier inclinación y orientación pero ha de ser plano.
  2. Dispone de dos estiletes (gnomon)
    • ESTILETE PERPENDICULAR, E0. Aguja recta perpendicular al plano del reloj de sol.
    • ESTILETE POLAR, EP. Aguja apoyada sobre el plano y el extremo del estilete perpendicular apuntando al polo celeste, Norte o Sur según el hemisferio.
  3. Puntos y coordenadas
    • ORIGEN DE COORDENADAS, O. Punto donde el estilete perpendicular se apoya en el plano, con dos ejes y sus coordenadas.
      • EJE OX. Siempre horizontal. Su ABSCISA, x, se cuenta positiva hacia la derecha.
      • EJE OY. En la dirección de máxima pendiente del reloj. Su ORDENADA, y, se cuenta positiva hacia arriba.
    • CENTRO, I. Punto donde el estilete polar se apoya en el plano. Se localiza en las coordenadas ( x0 , y0 )
    • ÁNGULO DE INCLINACIÓN DEL ESTILETE POLAR, ψ, con respecto al plano.
    • PUNTO P. Extremo del estilete perpendicular.
    • PUNTO P'. Extremo de la sombra del estilete perpendicular.
    • Datos necesarios:
      • LATITUD LOCAL, φ.
      • DISTANCIA CENITAL, z de la dirección definida por el estilete perpendicular.
        • Si z = 0º ⇒ El reloj es horizontal
        • Si z = 90º ⇒ El reloj es vertical
      • DECLINACIÓN GNÓMICA, D, acimut de la perpendicular al plano del reloj de sol, medido desde el meridiano sur hacia el oeste.
        • Si D = 0º ⇒ E0 apunta al SUR
        • Si D = 90º ⇒ E0 apunta al OESTE
        • Si D = 180º ⇒ E0 apunta al NORTE
        • Si D = 0º ⇒ E0 apunta al OESTE
      • LONGITUD del estilete perpendicular, a.
      • ÁNGULOS HORARIOS DEL SOL, Tabla H. Comenzando en valores negativos con incrementos constantes (5º o 15º, habitualmente) hasta alcanzar los mismos positivos
      • DECLINACIONES SOLARES, Tabla δ. Con los valores correspondientes a las fechas en las que la Longitud del Sol es múltiplo de 30º, es decir; (-23,44º , -20,15º , -11,47º , 0º , +11,47º , +20,15º , +23,44º)
      • Croquis general del reloj de sol

      INICIO REGRESAR

PARÁMETRO AUXILIAR

ARGUMENTOS

  • Latitud del lugar, φ en grados
  • Distancia cenital del estilete perpendicular, z en grados
  • Distancia gnómica, D en grados

CÁLCULOS

  • P= sen(φ) · cos(z) + cos(φ) · sen(z) · cos(D)

(Devuelve el valor P)

INICIO REGRESAR

VARIABLES BIDIMENSIONAL DE CONTROL

ACLARACIÓN

Se conforman para cada valor de la tabla H y de la tabla δ

ARGUMENTOS

  • Latitud del lugar, φ en grados
  • Distancia cenital del estilete perpendicular, z en grados
  • Distancia gnómica, D en grados
  • Tabla de ángulos horarios del Sol, H en grados
  • Tabla de declinaciones, δ en grados

CÁLCULOS

    Para cada valor Hi y cada valor δj:
  • Qij = sen(D) · sen(z) · sen(Hi) + ( cos(φ) · cos(z) + sen(φ) · sen(z) · cos(D) ) · cos(Hi) + P · tan(δj)

(Devuelve la tabla bidimensional Q)

INICIO REGRESAR

AUXILIARES DE COORDENADAS

ACLARACIÓN

Se conforman para cada valor de la tabla H y de la tabla δ

ARGUMENTOS

  • Latitud del lugar, φ en grados
  • Distancia cenital del estilete perpendicular, z en grados
  • Distancia gnómica, D en grados
  • Tabla de ángulos horarios del Sol, H en grados
  • Tabla de declinaciones, δ en grados

CÁLCULOS

    Para cada valor Hi y cada valor δj:
  • Nxij = cos(D) · sen(Hi) - sen(D) · ( sen(φ) · cos(Hi) - cos(φ) · tan(δj) )
  • Nyij = cos(z) · sen(D) · sen(Hi) - ( cos(φ) · sen(z) - sen(φ) · cos(z) · cos(D) ) · cos(Hi) - ( sen(φ) · sen(z) + cos(φ) · cos(z) · cos(D) ) · tan(δi)

(Devuelve las tablas bidimensionales Nx y Ny)

INICIO REGRESAR

COORDENADAS DE LAS SOMBRAS (DEL EXTREMO ESTILETE PERPENDICULAR)

ACLARACIÓN

Se conforman para cada valor de la tabla H y de la tabla δ

ARGUMENTOS

  • Longitud del estilete perpendicular, a
  • Tabla bidimensional variable de control, Q
  • Tablas bidimensionales auxiliares de coordenadas, Nx y Ny
  • Tabla de ángulos horarios del Sol, H en grados
  • Tabla de declinaciones, δ en grados

CÁLCULOS

    Para cada valor Hi y cada valor δj:
  • xij = a · Nxij Qij
  • yij = a · Nyij Qij

(Devuelve las coordenadas de todas las sombras en tablas bidimensionales x e y )

INICIO REGRESAR

LONGITUD DEL ESTILETE POLAR

ARGUMENTOS

  • Longitud del estilete perpendicular, a
  • Parámetro auxiliar, P

CÁLCULOS

  • u = a |P|

(Devuelve la longitud u )

INICIO REGRESAR

ANGULO DE INCLINACIÓN DEL ESTILETE POLAR

ARGUMENTOS

  • Longitud del estilete perpendicular, a
  • Longitud del estilete polar, u
  • Parámetro auxiliar, P

CÁLCULOS

  • ψ = arc sen (|P| ) = arc sen ( a u )

(Devuelve el ángulo de inclinación, ψ en grados )

INICIO REGRESAR

COORDENADAS DEL CENTRO DEL RELOJ

ARGUMENTOS

  • Longitud del estilete perpendicular, a
  • Latitud del lugar, φ en grados
  • Distancia cenital del estilete perpendicular, z en grados
  • Distancia gnómica, D en grados
  • Parámetro auxiliar, P

CÁLCULOS

  • x0 = a P · cos(φ) · sen(D)
  • y0 = - a P · ( sen(φ) · sen(z) + cos(φ) · cos(z) · cos(D) )

(Devuelve las coordenadas x0 e y0 )

INICIO REGRESAR